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Scaling violations are found in the phase-ordering two-dimensional Heisenberg [O(3)] model, which has
nonsingular topological textures, under dissipative nonconserved dynamics. Three separate length scales are
found: L ; characterizes the scale of individual textures, L 5 characterizes the separation between textures, and
L ¢ characterizes the distance between oppositely charged textures.

PACS number(s): 05.70.Ln, 64.60.Cn, 64.60.My

Dynamical scaling has had great success in describing
phase-ordering systems with purely dissipative local dynam-
ics [1]. The scaling hypothesis is that the evolution of the
system at late times can be characterized by a single growing
length scale L(t), which scales the two-point correlations of
the system. As yet, however, there is no general approach to
determine whether a particular system scales. Conserved
spherical systems can be shown to violate scaling [2], while
most other vector systems that have been investigated seem
to scale fairly well. Exceptions are provided by one- and
two-dimensional systems with weakly interacting nonsingu-
lar topological textures. Textures have both an internal scale
characterizing the size of an individual texture, and external
scales characterizing the texture separation. If these scales
evolve with different growth laws then scaling will be vio-
lated.

The simplest system with topological textures is the one-
dimensional (1D) XY [O(2)] model, in which the textures
are windings and antiwindings of the XY phase along the
system. These and all other textures are nonsingular, without
the singular core structure of, e.g., vortices or domain walls.
In 1D, anomalous growth laws for both nonconserved and
conserved dynamics [3] indicate scaling violations [4] that
have recently been observed and explained [5]. In this paper,
we explore two-dimensional (2D) systems with textures,
which we find also violate dynamical scaling. Unlike the 1D
systems, however, no extended scaling description is found
to apply to the two-point correlations.

2D Heisenberg [O(3)] systems support topological
textures—also variously called skyrmions, instantons, or
“baby skyrmions.” An isolated texture can be pictured as a
stereographic projection of an order-parameter sphere onto
the plane of the system [4]. The intrinsic scale of the texture
is then proportional to the radius of the projected sphere.
These 2D textures have recently been of particular interest:
e.g., in cosmological skyrmionic strings [6], in quantum an-
tiferromagnets [7], and also in particle physics [8]. In all of
these cases, 2D textures provide weakly interacting, local-
ized, but nonsingular, excitations.

Textures have an associated topological charge which is
quantized. After an arbitrary sign choice, isolated textures
have total charge + 1, while isolated antitextures have total
charge — 1. Static solutions consisting solely of texture (or
solely of antitexture) configurations, in a (hard-spin) nonlin-
ear o model, were discussed by Belavin and Polyakov [9].
The solutions are notable because the energy of the system is
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independent of the overall scale and also of the locations of
the individual textures, each one of which contributes unit
charge and 8 7 energy [using Eq. (2), below]. These quasi-
stable minimal energy solutions demonstrate the weak inter-
actions of 2D textures. On the other hand, systems with both
textures and antitextures are never static [9]. However, the
dynamics and evolution of generic textured systems is rela-
tively unexplored [8,10], particularly with dissipative dy-
namics. Indeed, the “unwinding,” or annihilation, of textures
with antitextures appears not to have been addressed in two
dimensions. In this paper we consider mixed systems of tex-
tures and antitextures developed by instantaneously quench-
ing a disordered state to T=0. The phase-ordering dynamics
are taken to be local, purely dissipative dynamics. For these
systems, our numerical simulations find a rich pattern of
scaling violations.
The nonconserved ‘“model A” dynamics are

8, (x,1)=—S6H/ 5, 6]

where

H=fd%RV$V+Vd$L4V1 )

The lack of thermal noise in (1) is appropriate for a quench
to =0, where the equilibrium state has long-range order.
We simulate the dynamics numerically with both soft
(Vo<o) and hard (Vy=%, or equivalently with a |@|=1
constraint) spins. We consider systems on square lattices of
sizes between 128X 128 and 512X 512, with periodic bound-
ary conditions and independent randomly oriented unit-
magnitude spins as initial conditions. We use at least 20 in-
dependent runs for each system, and errors indicated in the
figures are extracted from the variations between runs. We
use a simple Euler update with a fixed time scale 6¢=0.01
(except for Vy=1/2, where we used 6t=0.1), and consider
times up to £=10 000. The late-time regime covers nearly
three decades of time, starting with times #=10. This regime
is unchanged with a smaller time step. Similar results are
obtained with different Vy, although the early-time behavior,
and hence the asymptotic texture density, changes if V, is
small enough. In all cases, however, the asymptotic growth
laws remain the same.

Previous numerical work has been carried out on these 2D
O(3) systems, using Egs. (1) and (2), with both hard spins
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FIG. 1. A snapshot of one-quarter of a 512X 512 system with
Vy=10, at t=13.1. Shown are the regions with texture density
above the average magnitude, |p|=(|p|). Black clusters have posi-
tive texture density, while outlined gray clusters have negative tex-
ture density.

[11] and with soft spins (V= 10) [12], although topological
quantities were not measured. The hard-spin simulations, by
Bray and Humayun, found an energy density consistent with
€~t~%3, indicating a length scale L ~¢', and no dynamical
scaling [11]. The soft-spin simulations, by Toyoki, found
L~1t0%2=003 and dynamical scaling; however, only the en-
ergy and spin-spin correlations at times #=<20 (in our units)
were investigated [12]. In this regime, we see strong early-
time transients. Our results are consistent with this previous
work. However, we identify a distinct late-time regime in
which scaling is violated, and with growth law exponents
that do not depend on V.

The topological texture density for these systems is given
by

p(x)=[ - (3, X d,)]/4m, 3)

which measures the local winding of the spin field around
the unit sphere in order-parameter space. We show two snap-
shots of the texture density for part of a single 512X 512
system in Figs. 1 and 2. For clarity, we only show texture
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FIG. 2. A snapshot of the same system and region as in the last
figure, at t=27.9. Again, we show |p|={(|p|).
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density above the average magnitude in each figure. We
identify the three evolving length scales: L ; characterizes the
scale of each texture, Ly characterizes the separation be-
tween textures independent of charge, and L. characterizes
the separation between oppositely charged textures.

Dimensionally the equation of motion (1) determines a
growing length scale L~t!2, where we have suppressed the
dimensioned kinetic coefficient. Growth laws different from
this are only possible through the introduction of other
lengths: either the core scale &~V 2, or the initial corre-
lation length &,. We do not expect any ¢ dependence in this
system since there are no singular defects. Any &, depen-
dence, on the other hand, indicates a scaling violation, be-
cause then changing &, is not just equivalent to a shift in
time [4]. So, for systems without singular defects, any
growth law that differs from the dimensionally naive one
indicates a scaling violation. In addition, only positive pow-
ers of &, can enter into any growth law, yielding smaller
growth exponents than 1/2, because shorter initial correla-
tions should only decrease asymptotic length scales.

We first show the energy density and the average magni-
tude of the texture density p in Fig. 3(a). The energy density
€ follows from Eq. (2), and dimensionally scales as an in-
verse length-squared. The texture density, from Eq. (3), has
the same scaling. For spins of unit magnitude in the con-
tinuum, (p) is a conserved quantity. However, (|p|) is not,
and it decreases along with € as textures unwind with anti-
textures. At late times € and {|p|) fall off as 065002
indicating a growing length scale Ln~¢%¥3*%01 (We fit
times with £>10 and extract the approximate errors from the
variance of the exponents between different system sizes and
different V.) This length scale, L, determines the overall
texture density, and so characterizes the separation of indi-
vidual textures. There is excellent quantitative agreement be-
tween the different system sizes, indicating that finite size
effects only occur at later times, and qualitative agreement
between the soft- and hard-spin simulations at late times. For
soft potentials, the spins are not saturated at early times and
this results in the initial increase of the average magnitude of
the texture density seen for Vy=1/2, and the shift in the
asymptotic texture density at late times.

We can also consider the portion of the energy contained
in textures. Since an isolated hard-spin texture has an energy
of 87 using (2) [9], we have plotted 87(|p|) in Fig. 3(a).
The agreement with € at late times indicates that the asymp-
totic energy density is wholly contained in the textures. The
difference, e—(|p|) (not shown), decays very roughly like
t~'—and indicates a nontexture early-time transient. This
could explain why the strong early-time correction to scaling
observed in € is much smaller in the texture density {|p|).

While we find no way to scale two-point correlations of
either spins or texture density, we can extract relevant length
scales from the evolution of the correlations. However, be-
cause of the lack of scaling, this analysis has significant sys-
tematic errors due to the evolving functional form of the
correlations. In Fig. 3(b), we show the position of the first
zero of

S(r,t)=(p(x)p(x+r)). 4)

This zero roughly characterizes the texture-antitexture sepa-
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ration, L. The growth saturates as L approaches the sys-
tem size. We find Lo~ %491 fit over times £>10 and ex-
cluding late times when finite size effects are apparent.

There is a heuristic energy-scaling argument [4] for
Lc~tY2. We first identify the energy density of the
evolving system, e~ 1/L12v- Independently, we calculate the
rate of energy-density dissipation, J,e=(d,¢ SH/S)
= —((9,$)?), where we have used (1). Applying the dynam-
ics to (2), and neglecting the potential term since it is sub-
dominant energetically [4], we find 9,=V?¢. Inside a tex-
ture, V¢~ 1/L 7, while the Laplacian vanishes identically for
pure texture solutions [9]. The natural length to enter in the
second derivative, then, is the texture-antitexture separation,
L, so we expect V2h~ 1/LyL . This will hold over the
area of the texture (L%) for each texture (one per L%), re-
sulting in d,e~1/(L L )L %/LJZV~ 1/L éL,%, Comparing with
e~1/L}, we find Lo~t"2 This growth law is consistent
with the data.

What of the third length scale, L ? Since L7 is the texture
scale, it characterizes the width of the peak centered at r=0
of the two-point texture-density correlations. In Fig. 3(c), we
have plotted the width at half-maximum of

A(r,t)=(lp(x)p(x+1)|)—(|p|)*. 5)

Fitting the points for £>10 we find L 7~ ¢%?1=092 with simi-
lar results from S(r,t). We can check this growth law by
measuring (p?). Since there is one texture, of area L7 and
with p?~1/L}, in each area L%, we expect (p2)
~1/(L%L%). In Fig. 3(d), we measure (p2)~¢= 102003
by fitting t>10. Using LIZ\,~tO‘65t0'02 from €, we have an
independent estimate of L;~¢*19=%%2 This is consistent,
and we combine these estimates to find Ly~ ¢0-20+-002,

From the heuristic picture presented for L., small tex-
tures have larger gradients and will annihilate earlier — lead-
ing to an increasing Ly. If we assume that the remaining
textures have not evolved, then their internal charge density,
1/L%, is set by the initial fluctuations on the scale Ly, of
order L N/L%,. This implies LT~L}V/2. Using our measure-
ments for Ly and Ly, it is consistent that L,~¢'® and
L~1tY6 (where (p?)~¢~1). These exponents have been in-
dicated by straight lines in Fig. 3.

To summarize, we have found three characteristic length
scales in the phase ordering of the 2D nonconserved Heisen-
berg model. These length scales exhibit different growth
laws and so demonstrate the violation of dynamical scaling
in this system. The growth laws are L ~t%**01 describing
the separation of textures and antitextures, Ly~ ¢0-33=001
characterizing the separation of textures, and L ;~ ¢020%002
describing the scale of individual textures. From our heuris-
tic arguments, we believe that L -~ 2 exactly, and our data
are consistent with Ly~ ¢3¢} and L~ ¢"0£57 . The factors
of the initial correlation length &, make up the dimensions of
length needed for the scaling violations. A more convincing
explanation for the growth laws awaits a detailed under-
standing of the texture-antitexture unwinding mechanism.

Soft- and hard-spin simulations give the same growth
laws. Individual textures are destabilized by a finite V)
which leads to an effective negative (V ¢)* contribution to
the local energy density [6]. Scaling and numerical treat-
ments of isolated textures, with Vj<<co, then give a texture
scale X(£)~t"*, where 7 is the time remaining to collapse.
The near-neighbor lattice gradient used had similar contribu-
tions and instabilities [13]. The slightly faster than expected
growth of L may come from the the resulting collapse of
small textures. However, clarifying the role of the weak tex-
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ture instabilities in the asymptotic late-time regime awaits a
study with arbitrary, rather than just negative, fourth-order
gradients in the lattice version of (2).

To what extent does our picture of scaling violations carry
over to other systems with topological textures? Certainly in
one dimension a similar picture holds [5]. We believe that the
observed scaling violations in 1D and 2D are due to the weak
interactions between textures. This being the case, we would
expect similar scaling violations in conserved 2D O(3) mod-
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els, though these have not yet been explored to our knowl-
edge. However, because individual textures are strongly un-
stable for d>2 [14], it would be surprising if similar scaling
violations were observed in higher dimensions.
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